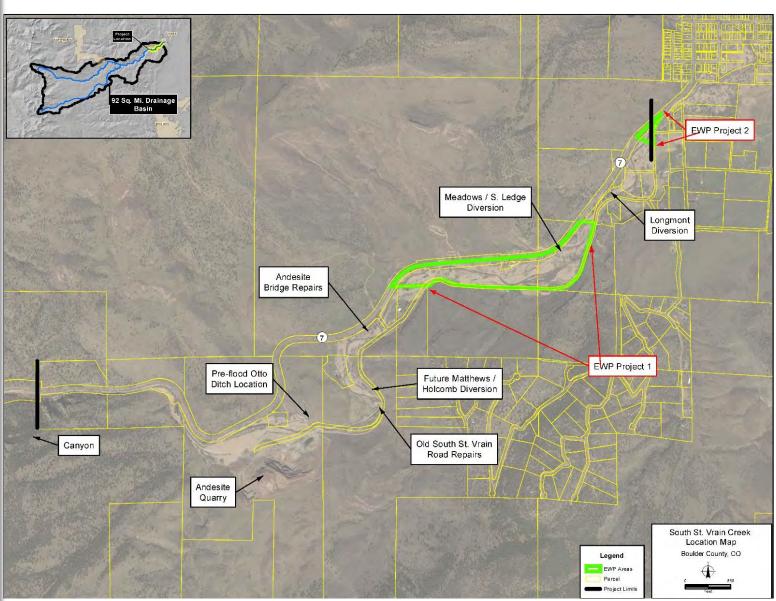
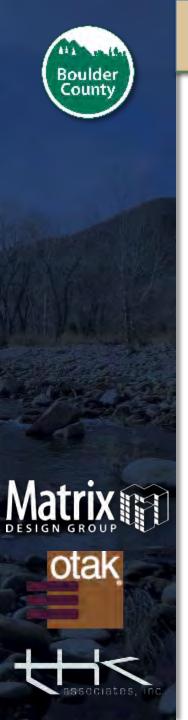




In association with: Otak, THK, ERO, and Blue Mountain




Introductions

- Introduction
- History of project
- Planning area: 3.2 Mile Reach from Canyon to Bridge
- Project sponsors and funding: DOLA/BCPOS
 - 30% Report and Designs
 - EWP Eligible Construction
- Project website
 - Information and comment
 - www.BoulderCountyOpenSpace.org/ssv

Matrix Team

Scott Schreiber, PE Matrix

QUALITY CONTROL / SENIOR LEVEL OVERSIGHT

Robert Krehbiel, PE (Matrix)

Julie Ash, PE (Otak)

Graham Thompson, PE (Matrix)

PROJECT TEAM

STAKEHOLDER ENGAGEMENT

Kevin Shanks, RLA, ASLA (THK) Robert Krehbiel, PE (Matrix)

SURVEY SERVICES

Bob Meadows, PLS (Matrix)

HYDROLOGY AND HYDRAULICS

Robert Krehbiel, PE (Matrix)
Scott Schreiber, PE (Matrix)
Ho Hung-Teng, PE (Matrix)

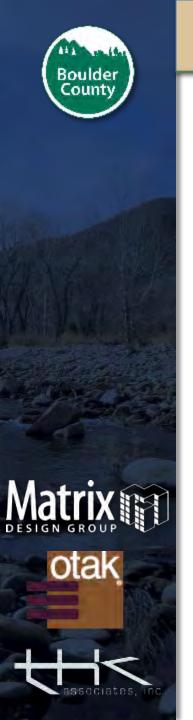
FLUVIAL GEOMORPHOLOGY

Luke Swan (Otak)
Tracy Emmanuel (Otak)

CHANNEL RESTORATION DESIGN

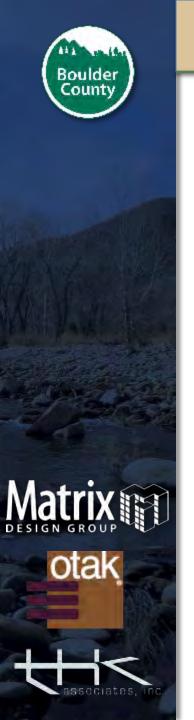
Blair Vajda, PE (Otak) Kevin Pilgrim (Otak) Scott Schreiber, PE (Matrix)

FISHERY BIOLOGY


Jim Nankervis (Blue)

REVEGETATION

Kevin Shanks, RLA, ASLA (THK)
Julie Gamec, RLA (THK)
Brandon Parsons, ASLA (THK)


RIPARIAN AND WETLAND ASSESSMENTS

Clint Henke (ERO)

Project Schedule

- Design schedule
 - Notice to proceed: May 2016
 - Alternative analysis: June 2016
 - Preferred alternative: July 2016
 - 30% design: September 2016
 - EWP Permitting and 80% Design: Fall/Winter 2016
 - EWP Construction: Winter/Spring 2017

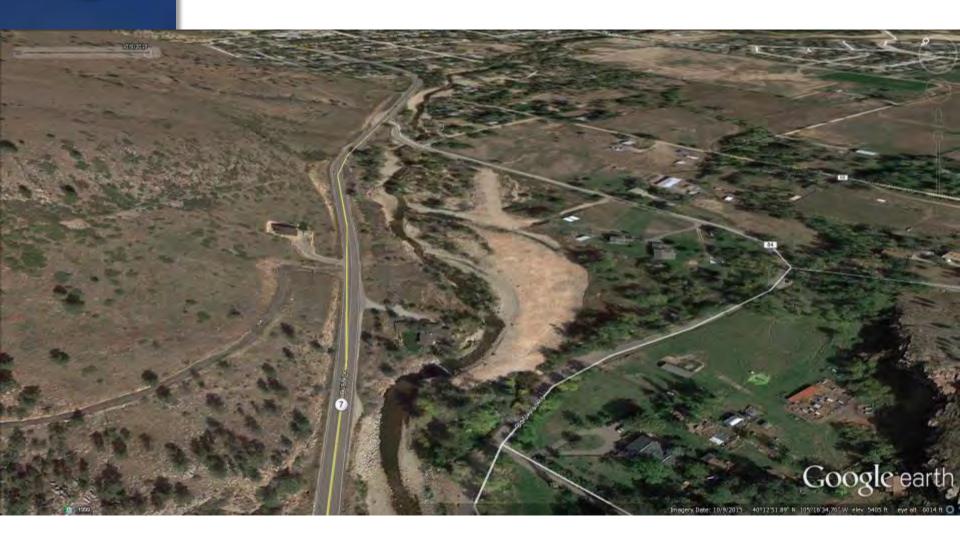
Public Engagement

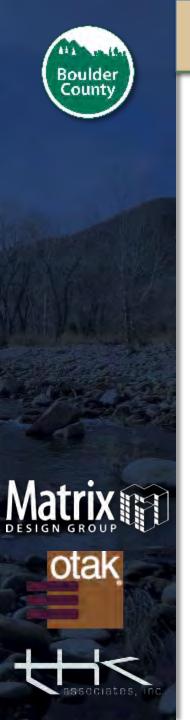
- Extensive Public Engagement
 - South St. Vrain Working Group May 11
 - St. Vrain Creek Coalition May 25, June 29,
 July 20, and August 17
 - General Public Meetings (Lyons) May 24 and June 30
 - Individual Land Owner Meetings June 22
 - Public Preferred Alternative Site Tour July 28
 - Various on-line comments, phone calls, and field visits
- Comments since 2013

Pre Flood Aerial: 2012

Pre Flood Aerial: 2012

Pre Flood Aerial: 2012





Project Goals Statement

Provide a conceptual design for the entire South Saint Vrain Creek project area that restores and improves the channel and surrounding floodplain areas to a safe, natural, resilient, functioning, and ecologically rich habitat. This project will use qualitative research, quantitative data, and community input to inform resilient design that shall utilize natural system principles and onsite materials to expedite recovery from the 2013 floods and set up for better performance in future flood events. Components to meet goals include incorporating natural channel diversity and character, re-establishing floodplain benches for lateral connectivity, reducing longitudinal connectivity constraints, improving flow conveyance and sediment transport to maintain environmental values, promote <u>naturally functioning stream</u> processes, protect public and private infrastructure, improve public safety, repair unstable erosion scars in high-risk areas, and revegetate denuded areas.

ssociates.

Decision Making Process

South St. Vrain Creek Restoration at Hall Ranch Decision Making Process: Critical Issues Paraphrased **Project Goals** Core Values from Stakeholder Comments Communicates with the residents Community infrastructure? 2. Avoids negative impacts to downstream infrastructure, channel and stormwater systems? 3. Improves aesthetics to the creek corridor? 4. Consider recreation where allowed? Incorporate residents needs in alternative analysis Be mindful of impact of property value Boulder - Consider the affects work will have downstream - Consider recreational opportunities County - Increase aesthetic appeal Consider existing water rights Minimize impact to cultural and historic features Parks & **Open Space** Improve "Creek Conveyance" Resiliency Provide smarter infrastructure solutions Improve creek stability Provide a conceptual design for the entire South Saint Vrain Creek project area that restores and improves the channel and surrounding floodplain areas to a safe, natural, resilient, - Reduce risk to critical infrastructure - Restore natural ecosystem process Reconnect the floodplain 8. Reduces future recovery time? 9. Improves conveyance of sediment? functioning, and ecologically rich habitat. Provide a 10. Reduce flood risk to the public and residents by Reduce the impacts to private property Safety preliminary design for the EWP Reduce potential flood risk project reaches. This project will Make public safety top priority resiliency? use qualitative research, quantitative data, and Assess existing environmental conditions Reduce sedimentation in general **Environment** 12. Protects or improves existing habitat and significant ecological resources? 13. Incorporates locally available materials and environmentally friendly processes? 14. Protects and improves water quality and the geomorphology of the creek? community input to inform resilient design that shall utilize Improve wildlife habitat (banking opportunities) resinent design that shan utilize natural system principles and onsite materials to expedite recovery from the 2013 floods and set up for better performance in future flood events. Components to meet goals include incorporating - Increased channel capacity to accommodate future flooding Work with natural systems Improve fish passage and habitat Remove and recycle onsite materials - Avoid highly-engineered solutions - Re-establish natural condition of the channel and adjacent stream bank

Increase revegetation efforts

Concerned about movement of potential debris both short and - Concerned about ground water and the rise in the creek bed

Concerned about interim berm condition along creek Consider new 100 year hydrologic volumes

Implementation

Schedule

- Work with existing project initiatives and ongoing projects

Find funding for future implementation

- Include fiscally responsible costs - Continue longterm planning for future projects - Meet the goals for EWP funding

Consider elements of the master plan

Be consistent with land use regulations and management Consider phasing

- Prioritize strategies as critical, necessary or desired

Prioritization Criteria

5. Benefits larger area of creek corridor?

6. Re-establishes floodplain connectivity?

7. Restores affected areas of the South St. Vrain Creek channel and surrounding areas to stable, resilient and ecologically rich habitats?

providing long term solutions that increase

15. Creates infrastructure investments that are reasonable to construct and provides the best value for their life-cycle, function and purpose?

16. Can be supported by current land use regulations or

revised land use regulations?

17. Provides funding, partnering and collaboration opportunities by meeting multiple stakeholder objectives?

Matrix Bassociates, inc

natural channel diversity and

character, re-establishing floodplain benches for lateral

connectivity, reducing

longitudinal connectivity

constraints, improving flow

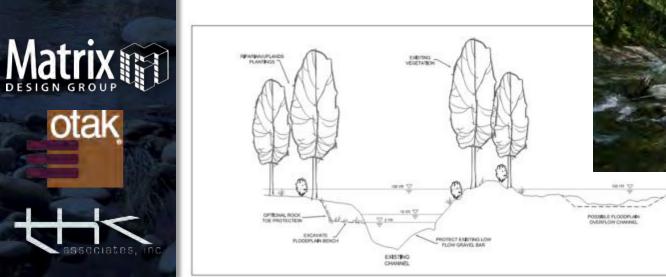
and revegetate denuded areas.

Core Values

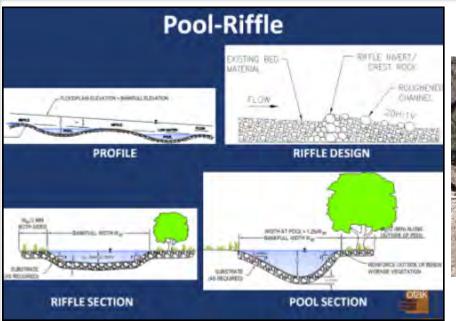
Prioritization Criteria

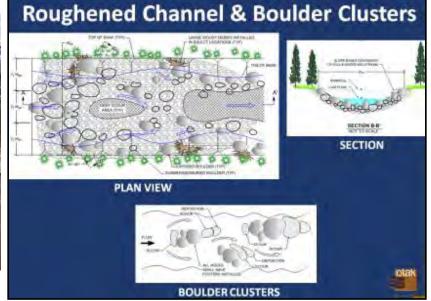
Prioritization Criteria

ID Critical Issues		Prioritization Criteria	Alternatives Evaluation	Fair Better Best					
			Floodplain Connectivity	Channel Complexity	Revegetation	Infrastructure Protection			
Prio	ritization Criter	ria							
1	Community	Protect critical public and private infrastructure?	The best way to increase food volume and reduce food energy throughout this system. Note (perention ponds can not provide enough volume to mitigate food engacia. Water rights are needed to better water. Deterition ponds would fill fill of sellment. There is physically not enough your to decan the appropriate amount of water needed.)	Can provide some channel stability.	Once vegetation is established can provide some flood-plain stability.	Can provide immediate site specific protection to infrastructu No system wide mitigation.			
2	Community	Avoids negative impacts to downstream infrastructure, channel and storm water systems?	Returns the over corridor to a more natural chancel condition with minimal downstream impacts.	Minimal downstream negative impacts.	Minimal downstream negative impacts.	While the technique might provide protection for the immedi element of infrastructure being protected, the technique can cause negative impacts downstream.			
3	Community	Improves aesthetics to the creek corridor?	Returns the river corridor to a more natural channel condition. Time needed for naturalization of vegetation	Improves the aesthetics of the channel.	Jump starts revegetation of the entire river consider.	Most techniques appear engineered.			
4	Community	Consider recreation where allowed? (1)	Improves the quality of the recreational experience.	Provides instream structures that could act as a increational amoney to Sayakers and fishermen.	Improves the quality of the recreational experience.	Recreational objectives could be included with infrastructure protection.			
5	Resiliency	Benefits larger area of creek corridor?	Benefits the larger creek corridor by jump starting the natural systems.	Benefits the channel by moderating sediment load.	Benefits the larger creek corridor but without flooiplain (ownectivity the results will be diminished.	Very site specific benefits at the point where the improveme made.			
6	Resiliency	Re-establishes floodplain connectivity?	ves. Floodplain connectivity is the most holistic approach to re-establish a functioning floodplain.	Yes, Cannel complexity would contribute to inundation of floodplain, benches.	Yes. Revegetation provides roughness to slow floodwater down and establishes long fasting ecosystem benefits.	No			
7	Resiliency	Restores affected areas of the South St. Vrain Creek channel and surrounding areas to stable, resilient and ecologically rich habitats?	Yes	Yes	Jump starts terrestrial and riparlan habitat.	Makes certain reaches more stable.			
8	Resiliency	Reduces future recovery time?	Jump starts the natural systems of the corridor most holistic approach.	Not a holistic approach, focuses on channel.	Not a holistic approach. Some established vegetation, soil structure an seedbanks would survive a flood event and secondary succession would occur.				
9	Resiliency	Moderates conveyance of sediment?	Yes for the entire reach.	Yes for the entire reach	Traps sediment during a flood and minimizes erosion.	Could be part of the strategy at diversions, bridges and culve			
10	Safety	Reduce flood risk to the public and residents by providing long term solutions that increase resiliency?	Increases flood storage volume and reduces flood energy (fernighout the system.	Provides some creek channel resiliency.	Once allowed to mature the vegetation provides some resistance to future floods.	Hardened points are created in the corridor not always resili			
11	Environment	Natural ecosystem processes restored?	Most holistic approach	Partial approach, not all ecosystems addressed.	Partial approach, not all ecosystems addressed.	Least holistic approach.			
12	Environment	Protects or improves existing habitat and significant ecological resources?	Improves both terrestrial and aquatic habitat:	Improves aquatic habital.	Improves terrestrial and riparian Rabitat	Not the focus of infrastructure protection techniques.			
13	Environment	incorporates locally available materials and environmentally friendly processes?	Not a differentiator. All alternatives can incorporate locally available materials and environmentally friendly processes.						
14	Environment	Protects and improves water quality and the geomorphology of the creek?	Protects geomorphology and jump starts hatural systems of the corridor.	Protests geomorphology and jump starts natural systems of the creek.	Reduces erosion.	Reduces erosion in site specific areas.			
15	Implementation	Creates infrastructure investments that are reasonable to construct and provides the best value for their lifecycle, function and purpose?	Because it jump starts the corridor's natural systems it is the best value for their life-cycle.	Reasonable to construct and jump starts natural system of the creek.	Without regrading, the revegetation effort will have diminished results	Protects infrastructure but requires on-going maintenance.			
16	Implementation	Can be supported by current land use regulations or revised land use regulations?	Not a differentiator. All alternatives can be supported by the current land use regulations.						
17	Implementation	Provides funding, partnering and collaboration opportunities by meeting multiple stakeholder objectives?	Not a differentiator. There are opportunities with all alternatives for partnering.						

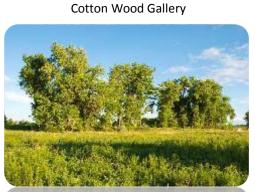

Alternatives evaluated in matrices to determine most effect (preferred) alternative

Alternative: Floodplain Connectivity

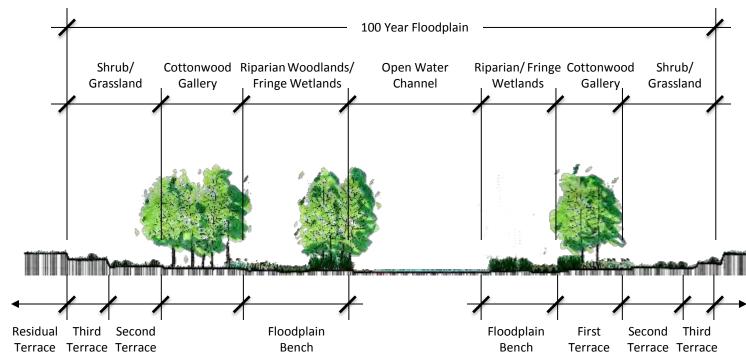




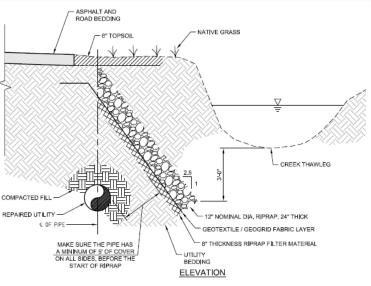
Alternative: Channel Complexity

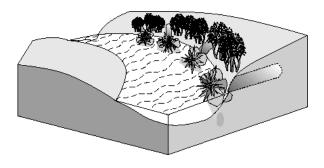


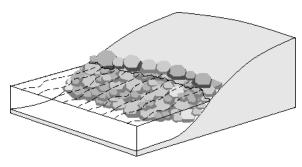
Alternative: Revegetation

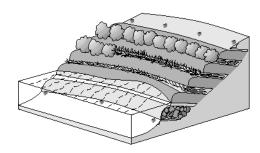


issociates, ind



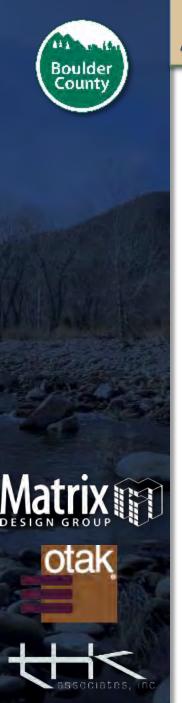



Alternative: Infrastructure Protection



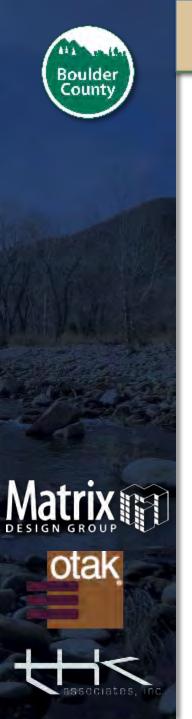
Root Wad Stabilization

Utility Armoring

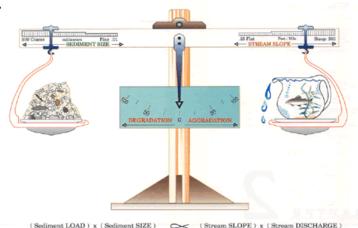


Boulder Toe Protection

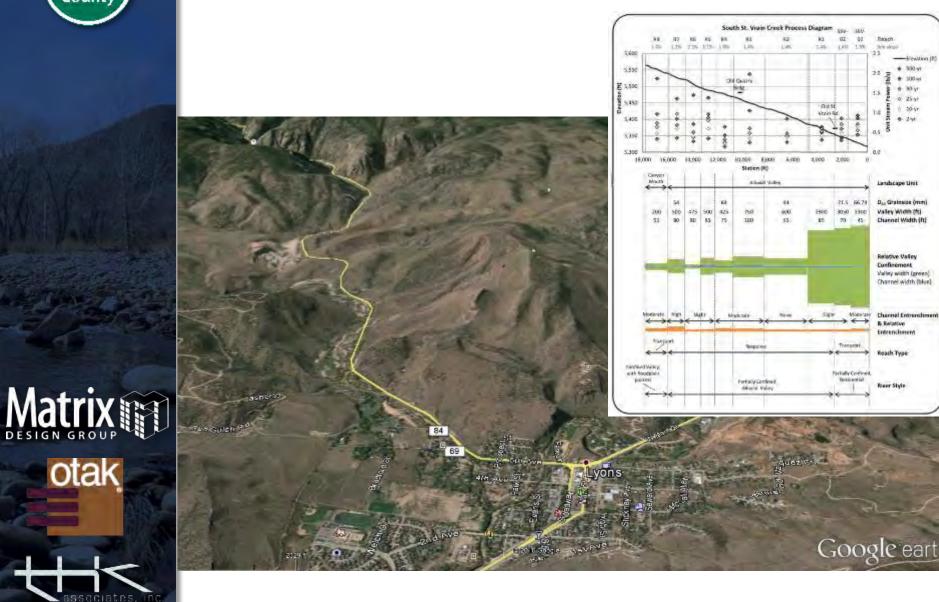
Vegetated Geogrid



Additional Design Aspects Evaluated

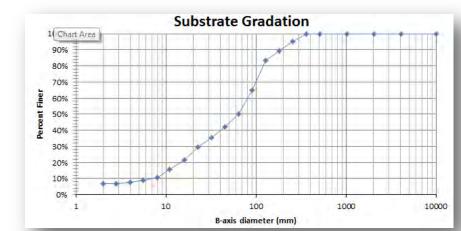

Existing infrastructure aspects investigated to provide future recommendations

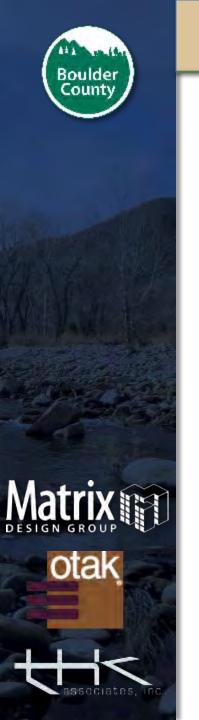
- Old St Vrain Road Bridge
 - Required capacity and road overtopping
- Longmont Diversion
 - Relocation of diversion and floodplain conveyance
- South Ledge/Meadows Ditch
 - Sedimentation issues
- Woody Vegetation Management


Geomorphology

- Geomorphic Assessment
 - Data Review
 - Desktop Analysis
 - Field Assessment
- Sediment Transport
 - Stability Analyses
 - Trajectory determination
 - Structure design
- What questions are we trying to answer?
 - What are prevailing processes and how do we use them to achieve the project goals?
 - What is the channel trajectory and what does that mean for the project goals?
 - Is the channel stable? Is the design stable?

Geomorphology - Assessment




Matrix DESIGN GROUP

otak

Geomorphology - Assessment

Geomorphology - Assessment

River Styles

Partially Confined, Alluvial Valley (PCAV)

Properties:

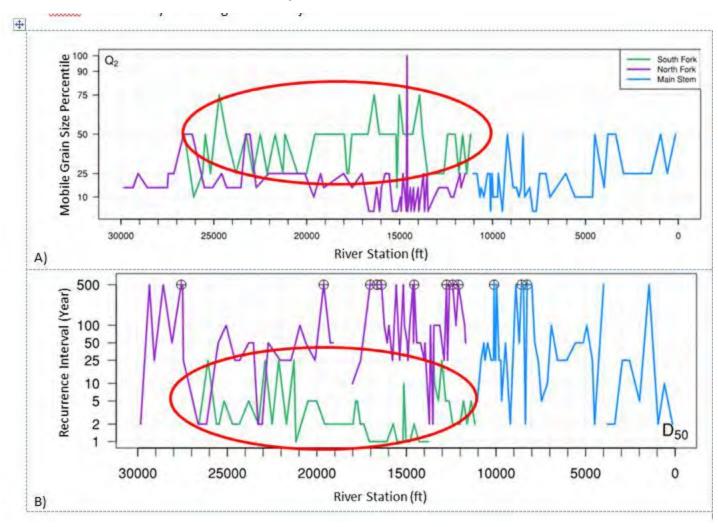
The majority of the reaches in the study area are classified under this stream style. They occupy the transition from the canyons through the hogbacks to the alluvial plain landscape units. Slopes are steep, but milder than the confined reaches (observed slopes ranged from 0.3% to 2.1%). As a result of this relative steepness, relative lack of confinement, and position downstream of confined reaches directly coupled with hillslope sediment supplies, these reaches exhibit the most geomorphic response to floods. Because these reaches experienced the most geomorphic change, many channels of this style are still evolving in response to the floods. In some cases, channels are beginning to narrow and some side channels are slowly filling in with sediment. Nevertheless, a large amount of unstable sediment ranging from sand to cobble material exists in the banks and floodplains of these reaches and will continue to be a net sediment supply to downstream reaches for some time.

Reaches:

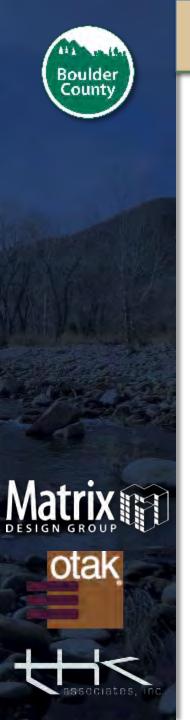
Valley Setting

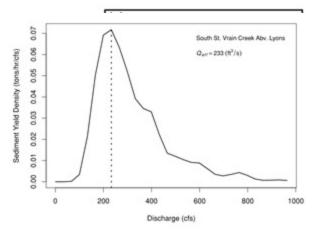
SVC-03, SVC-04, SVC-05 / NSV-04, NSV-05, NSV-06 / SSV-03, SSV-04, SSV-05, SSV-06, SSV-07, SSV-08, SSV-09

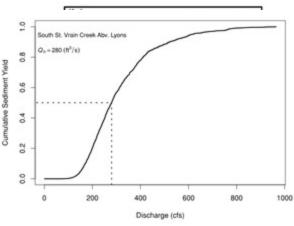
RIVER CHARACTERISTICS

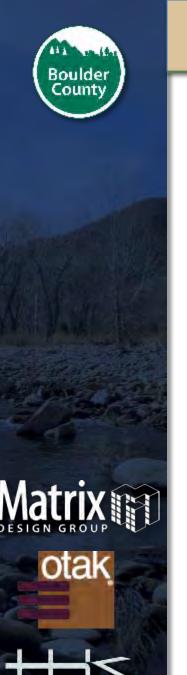

0					
Channel Planform	Meandering channel with low sinuosity, braided in some areas after flood. High flow, side channels present.				
Bed Morphology	Typical: pool-riffle, boulder clusters, large wood jams and roughness elements; lateral and mid-channel bars Observed: pool-riffle, plane bed, riffle-run, mid-channel/point/lateral bars, instream large wood				
RIVER BEHAVIOR					
Current Stream Evolution Stage	Majority of reaches are in the Aggradation and Widening stage, with a few in the Degradational stage and a few in the Quasi Equilibrium stage (post-restoration)				
Flood Response	Flood response ranged from channel widening throughout, downstream lateral migration of meander bends, channel avulsion, and braiding.				
Stage Behavior	Low flows are generally single thread with splits around mid-channel bars. Sediment is stored in bar complexes at the channel margin. Bankfull flows activate side channels and re-work in-channel bars. Large wood has significant influence on bank erosion and sediment accumulation. At flood stages, extremely high stream power values are generated before flows can spill into extensive floodplains, dissipating stream energy. Side channels are activated through injurdation and channel avulsions will likely occur. Large wood is recruited into the channel as banks and				

terraces become undercut and may have significant influence over channel behavior as additional wood is racked up.

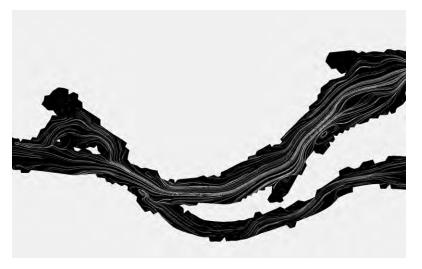

Partially confined. Observed confinement ratio ranging from 3 to 35


Base Bed Mobility





- Effective Discharge
 - Q_{eff} flow that transports most sediment over time
 - Q_h discharge associated with cumulative 50% of sediment yield



Sediment Transport Capacity and Balance

Stream Power

$$q_z = 4.610^{-7} \Omega^{1.75} D_{50}^{-0.56}$$

$$\Omega = \frac{\omega^{1.5}}{R^{\frac{2}{3}}} \qquad \omega = \frac{\rho g Q S}{b}$$

Meyer-Peter Muller

$$\left(\frac{k_r}{k_r}\right)^{1/2} \gamma RS = 0.047 (\gamma_s - \gamma) d_m + 0.25 \left(\frac{\gamma}{g}\right)^{1/3} \left(\frac{\gamma_s - \gamma}{\gamma_s}\right)^{2/3} g_s^{2/3}$$

Where: g_s = Unit sediment transport rate in weight/time/

k, = A roughness coefficient

k, = A roughness coefficient based on grains

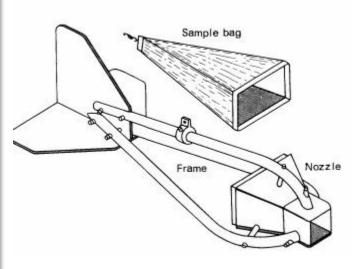
Unit weight of water

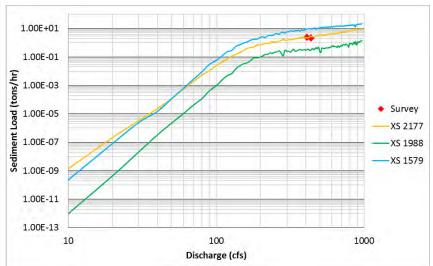
2 = Unit weight of the sediment

g = Acceleration of gravity

d_m = Median particle diameter

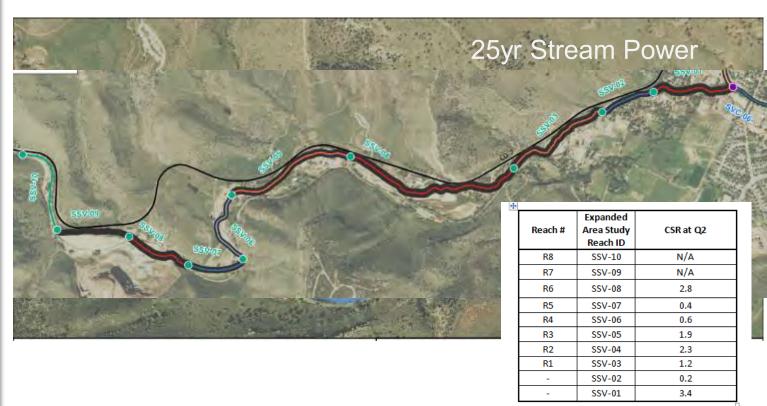
R = Hydraulic radius

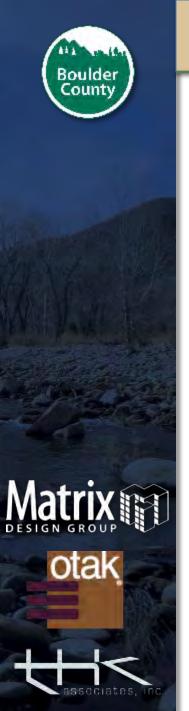

S = Energy gradient


Capacity-Supply Ratio (CSR)

- Reach capacity/supply
- 1 is good

Sediment Transport Capacity and Balance

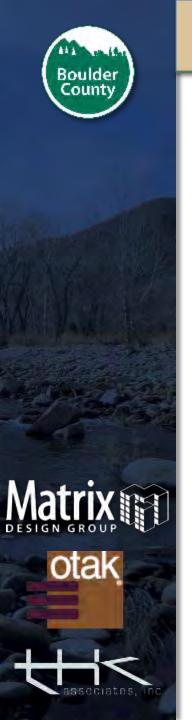



Matrix DESIGN GROUP

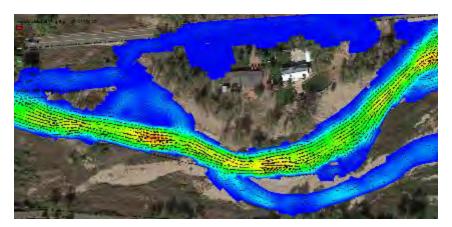
otak

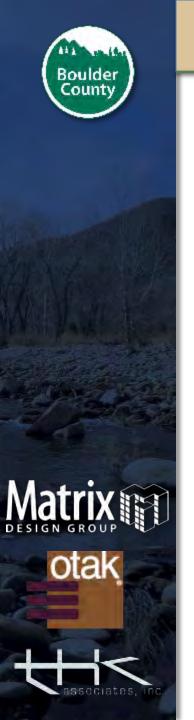
Geomorphology – Sediment Transport

Sediment Transport Capacity and Balance



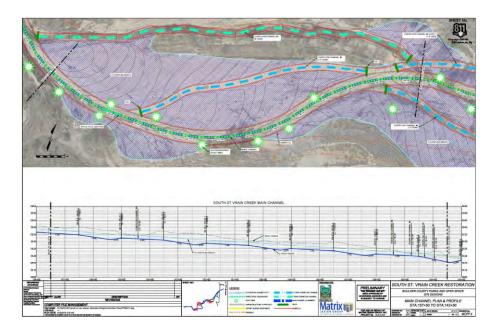
Geomorphology - SEM


Stream Evolution Model


Reach #	Expanded Study Reach ID	River Style	Current Stream Evolution Stage ^{a,b}	Capacity/Supply Ratio @ Q ₂		Stream Evolution <u>Trajectory</u> s,b	
	Reactific		Stage	Existing	Proposed	Existing	Proposed
8	SSV-10	Confined Valley w/ FP pockets	N/A	-	-	N/A	N/A
7	SSV-09	Partially Confined, Alluvial Valley	Stage 3 Degradation	-	-	Stage 4 Degradation and Widening	Stage 6 Quasi Equilibrium
6	SSV-08	Partially Confined, Alluvial Valley	Stage 5 Aggradation and Widening	2.8	1.5	Stage 3 Degradation	Stage 4 Degradation and Widening
5	SSV-07	Partially Confined, Alluvial Valley	Stage 4 Degradation and Widening	0.38	0.4	Stage 5 Aggradation and Widening	Stage 6 Quasi Equilibrium
4	SSV-06	Partially Confined, Alluvial Valley	Stage 5 Aggradation and Widening	0.59	1.0	Stage 6 Quasi <u>Equilibrium</u> c	Stage 6 Quasi Equilibrium
3	SSV-05	Partially Confined, Alluvial Valley	Stage 4 Degradation and Widening	1.9	1.2	Stage 5 Aggradation and Widening	Stage 7 Laterally Active
2	SSV-04	Partially Confined, Alluvial Valley	Stage 4 Degradation and Widening	2.3	1.3	Stage 5 Aggradation and Widening ^c	Stage 7 Laterally Active
1	SSV-03	Partially Confined, Alluvial Valley	Stage 5 Aggradation and Widening	1.2	1.2	Stage 6 Quasi <u>Equilibrium</u> s	Stage 3s Arrested Degradation
Note	b N/A=s the sam	^a Based on (Cluer & Thorne, 2013) ^b N/A=stream evolution model not applicable (e.g., step-pool reaches do not necessarily follow the same disturbance model) ^c Potential for reach to move into Stage 3 - Degradation					

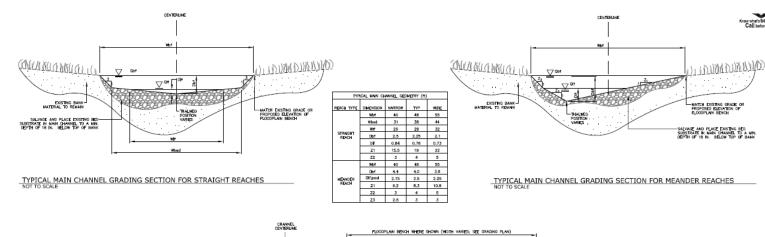
Geomorphology - Summary

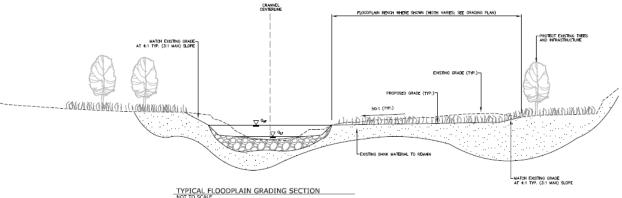

- Stream is generally featureless, over-widened and likely to degrade disconnecting further from the existing floodplain
- Restoration and Flood Mitigation Strategies:
 - Establish equilibrium channel geometries that promote/maintain floodplain connection
 - Control sediment supply with aggressive revegetation
 - Establish geomorphic complexity to manage sediment load, improve habitat

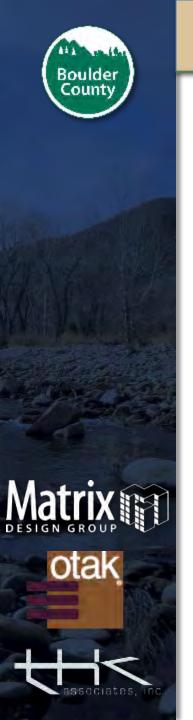

Design Process

- Understand Hydraulics with Development of Design Models
 - 1-D HEC-RAS
 - Regulatory floodplain modeling
 - 2-D Sedimentation and River Hydraulics
 - Final design parameters and sediment transport
- Iterative Process
 - EC Topography and Modeling
- PC Grading and PC Modeling
 - Refine PC Topography
 - Verify Capacity-Supply Ratio
 - Structure and Revegetation Design

30% Design


- Channel Geometry
 - Function of hydraulic geometry, and constraints
- Main Channel and Overflow Planform
 - Pre-Flood or Existing Alignments
- Channel Profile
 - Equilibrium bed slope analysis (0.8 2% range)



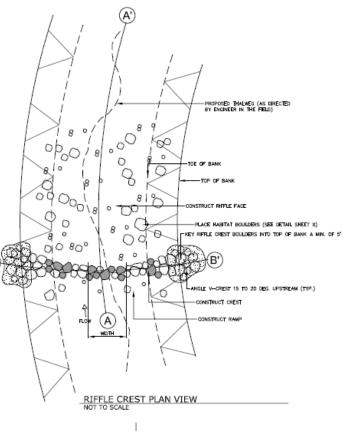


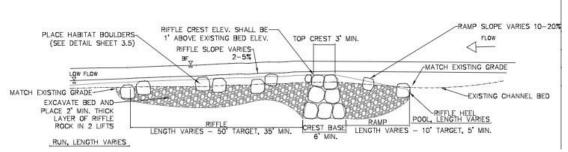
30% Design

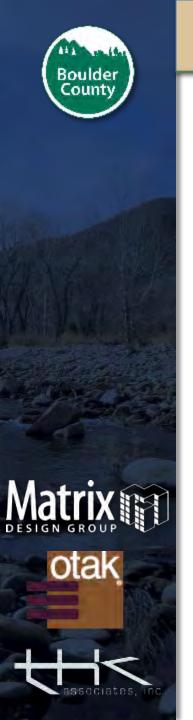
- Channel and Floodplain Dimensions
 - Multi-Stage Channel

1.5 and 5 Year Overflow Channels

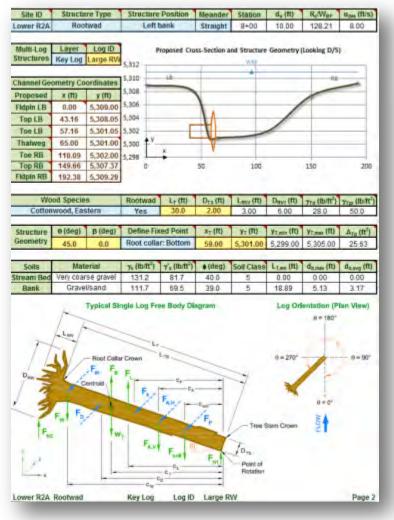
- Along Existing and/or Pre-Flood Channel Alignments to stretch implementation funds
- On Average 25' Bottom Width with Gentle Side Slopes
- Vegetation Lined and/or Stream Substrate






Matrix DESIGN GROUP

Riffle Structure Design


Large Woody Material and Vegetation

- Geomorphic, Biologic and Ecologic Benefits
- Implementation Guidance
 - Site Visit with Boulder County Emergency Management (OEM)
 - OEM Decision Process
 - Focused on hazard trees in the vicinity of infrastructure
 - National Guidance Documents on the Design of Engineered Log Structures

Large Wood Structure Design

Driving Moment

			Ver	ical For	ce Analysis			
	N	et Buoya	ncy Force	9	Lift F	orce	_	
Wood	V _{Ts} (ft ³)	V _{RVV} (ft ³)	V _T (ft ³)	W _T (lbf)	F _B (lbf)	CLT	0.00	
↑WSE	0.0	0.0	0.0	0	0	F _L (lbf)	0	
WS↑Thw	84.8	25.5	110.3	3,083	6,882	Vertical	Force B	alan
↓Thalweg	0.0	7.2	7.2	361	450	F _B (lbf)	7,332	1
Total	84.8	32.7	117.5	3,444	7,332	F _L (lbf)	0	
						VV _T (lbf)	3,444	4
	Soil	Ballast F	orce			F _{soil} (lbf)	8,275	Ψ.
Soil	V _{dry} (ft ³)	V _{sat} (ft ³)	V _{soil} (ft ³)	F _{soil} (lbf)		F _{VV.V} (lbf)	0	
Bed	0.0	0.0	0.0	0	1	FAV (lbf)	0	1
Bank	0.0	119.0	119.0	8,275		Σ F _V (lbf)	4,386	4
Total	0.0	119.0	119.0	8,275		FSv	1.60	0
						-		
			Horiz	ontal Fo	rce Analys	is		
		Drag I	Force			7		-
A _{Tp} / A _W	Fr	C _{DI}	Cw	C _D *	F _D (lbf)	Horizont	al Force	Bal
0.02	1.00	1.12	0.03	1.19	1,900	Fp (lbf)	1,900	-
		777				F _p (lbf)	18,185	+
	Soil Pre	ssure	Fri	ction For	ce	F _F (lbf)	3,583	+
Passive			400	ц	F _F (lbf)	F _{vv.H} (lbf)	0	
Passive Soil	K _p	F _P (lbf)	L _{Tf} (ft)		1 (100.1)			
	К _р 4.60	F _P (lbf)	7.63	0.84	877	FAH (lbf)	0	
Soil				_		F _{A,H} (lbf) Σ F _H (lbf)	19,868	+

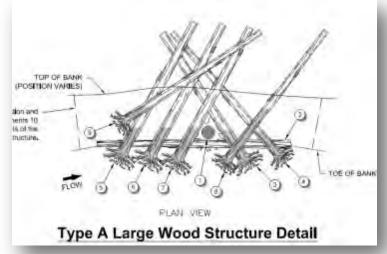
				Forces	Anchor				
chors	anical An	Mech			Additional Soil Ballast				
F _{Am} (lbf	Soils	C _{Am} (ft)	Type		FA,HP (lbf)	FA,Vsoil (lbf)	CAsoll (ft)	V _{Awet} (ft ³)	V _{Adry} (ft ³)
0	7				0	0			
0				2.0.5.1					
				Ballast	Boulder				
	F _{A,Vr} (lbf)	F _{D,r} (lbf)	F _{L,r} (lbf)	W _r (lbf)	V _{r,wet} (ft ³)	V _{r,dry} (ft ³)	CAr (ft)	D _r (ft)	Position
	F _{A,Vr} (lbf)	F _{D,r} (lbf)	F _{L,r} (lbf)				C _{Ar} (ft)	D _r (ft)	Position
F _{A,Hr} (lbf		F _{D,r} (lbf)	F _{L,r} (lbf)				C _{Ar} (ft)	D _r (ft)	Position

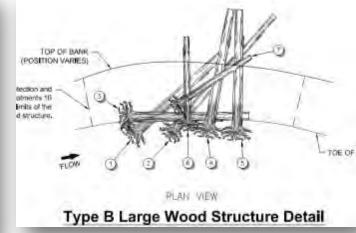
Moment Force Balance

Resisting Moment Centroids

Cp (ft)

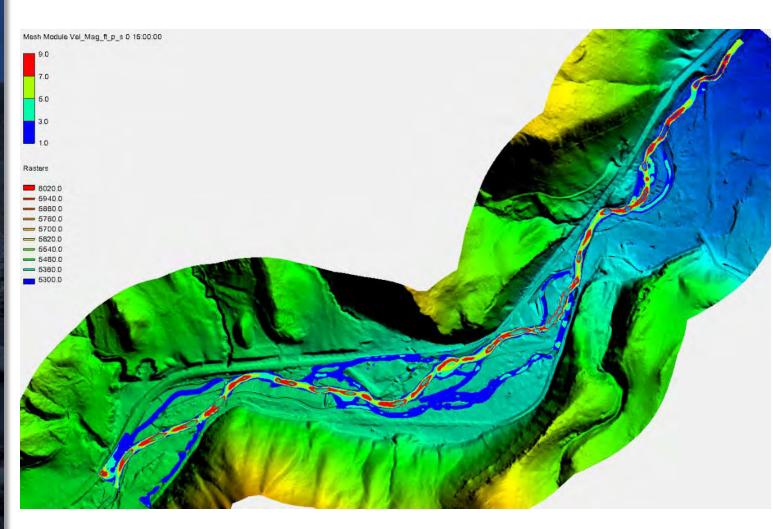
C_{soll} (ft)

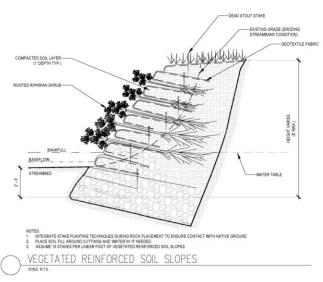

9.4

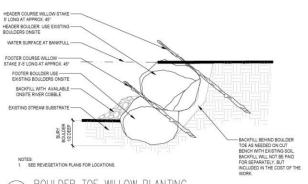

Moment Force Balance

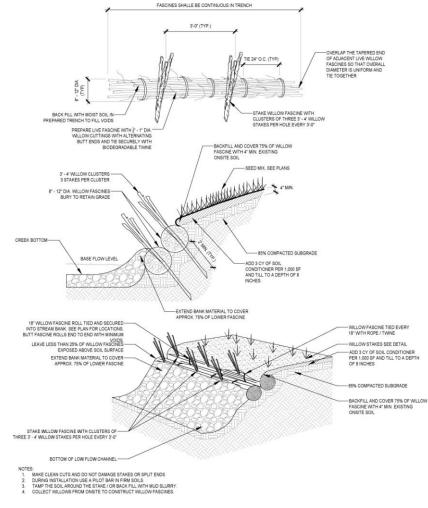
M_d (lbf) 180,729 M_r (lbf) 487,498

Large Wood Structure Design

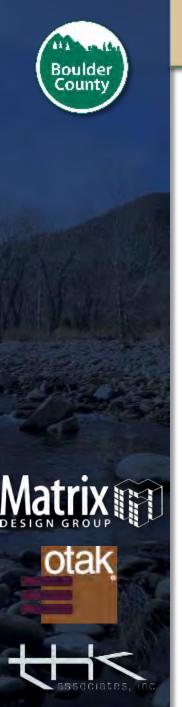


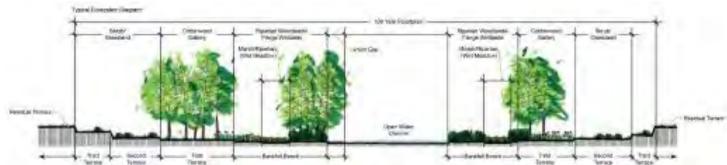

Bank Stabilization





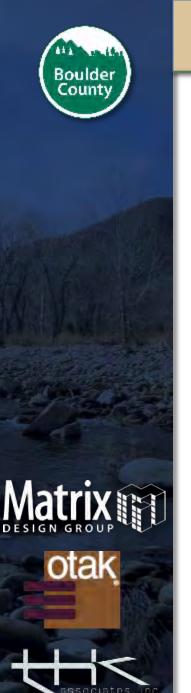
Bank Stabilization


LIVE WILLOW FASCINE


Bank Stabilization

Revegetation: Goals

- Preserve Existing Vegetation
- Planting Diversity Based Upon Proximity to Water Table (Iterative Design Process)
- Match existing plant species and ecosystem types to historical character and onsite conditions.


Revegetation Assessment

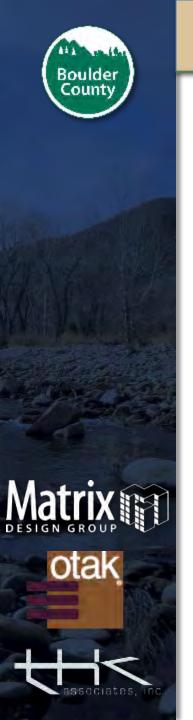
- Evaluate onsite plant communities
- Utilize State and National Resources
 - National Wetland Inventory Wetlands Mapper
 - Colorado Wetland Inventory Mapping Tool
 - The CNHP Field Guide to Wetland and Riparian Plant Associates

Revegetation Recommendations

- Re-establish upland, riparian, wetland environments through:
 - Seeding (Riparian and Upland)
 - Perennial Tubelings
 - Wetland Sod
 - Tree and Shrub Plantings
 - Willow Staking

Revegetation Results





30% Design Plans and Report

- Posted to Boulder County Project Website
 - http://www.bouldercounty.org/ssv
- 30% Design Plans
 - 62 Sheets
 - Plan and Profile of Main and Overflow Channels
 - Channel Design Details
 - Revegetation Plans
 - Revegetation and Bio-Engineering Details
 - Additional Planning Elements
- 30% Preliminary Basis of Design Report
 - 299 Pages

Next Steps

- 80% Design Drawings
 - Working with EWP and Boulder County
 Currently to contract for additional services
- Permitting
 - 404 CWA, Floodplain, Land Use, Stormwater
- Construction
 - Bid Support
 - Construction Oversight and Closeout